BUREAU OF PUBLIC WATER SUPPLY

CALENDAR YEAR 2011 CONSUMER CONFIDENCE REPORT
CERTIFICATION FORM Public Water Supply Name OBOO3 OBOO 4 OBOO15 0080017 List PWS 1D#s for all Water Systems Covered by this CCR
The Federal Safe Drinking Water Act requires each <i>community</i> public water system to develop and distribute a consumer confidence report (CCR) to its customers each year. Depending on the population served by the public water system, this CCR must be mailed to the customers, published in a newspaper of local circulation, or provided to the customers upon request.
Please Answer the Following Questions Regarding the Consumer Confidence Report
Customers were informed of availability of CCR by: (Attach copy of publication, water bill or other)
Advertisement in local paper On water bills Other
Date customers were informed: 6 120/12
CCR was distributed by mail or other direct delivery. Specify other direct delivery methods:
Date Mailed/Distributed://
CCR was published in local newspaper. (Attach copy of published CCR or proof of publication)
Name of Newspaper: The Grenward Commonwoolth
Date Published: 6 501/2
CCR was posted in public places. (Attach list of locations)
Date Posted: 6 1201 (2
CCR was posted on a publicly accessible internet site at the address: www. Office of Colucia
<u>CERTIFICATION</u> Unater
hereby certify that a consumer confidence report (CCR) has been distributed to the customers of this public water system in the form and manner identified above. I further certify that the information included in this CCR is true and correct and is consistent with the water quality monitoring data provided to the public water system officials by the Mississippi State Department of Health, Bureau of Public Water Supply.
Name/Title (President, Mayor, Owner, etc.) Clark Date
Mail Completed Form to: Bureau of Public Water Supply/P.O. Box 1700/Jackson, MS 39215 Phone: 601-576-7518

2011 Annual Drinking Water Quality Report Pelucia Rural Water Association, Inc. PWS#: 080003, 080004, 080015 and 080017 June 2012

2012 JUN -7 PM 12: 47

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Tallahatta Formation and the Meridian Upper Wilcox Aquifers.

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Pelucia Rural Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Charles Mims at 662.455.2660. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of each month at 6:00 PM at the Pelucia office building.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1st to December 31st, 2011. In cases where monitoring wasn't required in 2011, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring minerals and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human activity; microbial contaminants, such as viruses and bacteria, that may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife; inorganic contaminants, such as salts and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and mining activities. In order to ensure that tap water is safe to drink, EPA prescribes regulations that limit the amount of certain contaminants in water provided by public water systems. All drinking water, including bottled drinking water, may be reasonably expected to contain at least small amounts of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the water poses a health risk.

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms we've provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal" (MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) – The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) – The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

Parts per billion (ppb) or Micrograms per liter - one part per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000,000.

PWSID #	008000	3	-	TEST RESU	ILTS			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
10. Barium	N	2011	.046	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
17. Lead	N	2009/11	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
19. Nitrate (as Nitrogen)	N	2011	.86	No Range	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits

Disinfectio	n By-I	Product	S					
Chlorine	Y	2011	.8	.7 - 9	ppm	0	MRDL = 4	Water additive used to control microbes

PWS ID#:	เกกรกกก	4	`]	TEST RESU	L12			
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
10. Barium	N	2011	.044	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
14. Copper	N	2011	.2	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
17. Lead	N	2009/11	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
19. Nitrate (as Nitrogen)	N	2011	.86	No Range	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Disinfection	on By-Pı	roducts						
Chlorine	N	2011 .	8 .8	3 – .9	ppm	0 MR		Water additive used to control microbes

Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detect or # of Samples Exceeding MCL/ACL		MC	LG	MCI	Likely Source of Contamination	
Inorganic	Contan	ninants								
10. Barium	N	2011	.047	No Range	ppm		2		Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits	
14. Copper	N	2011	.1	0	ppm		1.3	AL=	1.3 Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives	
15. Cyanide	N	2011	57.77	No Range	ppb		200	2	00 Discharge from steel/metal factories; discharge from plastic and fertilizer factories	
17. Lead	N	2009/11	2	0	ppb		0	AL=	15 Corrosion of household plumbing systems, erosion of natural deposits	
19. Nitrate (as Nitrogen)	N	2011	.87	No Range	ppm		10		Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits	
Disinfection	n By-P	roducts								
81. HAA5	N	······	2	No Range	ppb	0		60	By-Product of drinking water disinfection.	
Chlorine	N	2011 .	5	.58	ppm	0	MRI	DL = 4	Water additive used to control microbes	

Contaminant	Violation	Date	Level	Range of Detects	unit	MCLC	3	MCL	Likely Source of	
	Y/N	Collected	Detected	or # of Samples Exceeding MCL/ACL	Measure- ment				Contamination	
Inorganic	Contar	ninants								
10. Barium	N	2011	.044	No Range	ppm		2	discharge fro	f drilling wastes; om metal refineries; atural deposits	
14. Copper	N	2009/11	.3	0	ppm	1	.3 AL=	systems; ero deposits; lea	Corrosion of household plumbir systems; erosion of natural deposits; leaching from wood preservatives	
17. Lead	N	2009/11	1	0	ppb		0 AL=		household plumbing osion of natural	
19. Nitrate (as Nitrogen)	N	2011	.86	No Range	ppm	•	10	leaching from	fertilizer use; n septic tanks, sion of natural	
Disinfection	on By-P	roducts					-			
Chlorine	N	2011 .8	.7	9	opm	1 0	MRDL = 4	Water additive u	ised to control	

^{*} Most recent sample. No sample required for 2011.

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hotline at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

***** MESSAGE FROM MSDH CONCERNING RADIOLOGICAL SAMPLING*****

In accordance with the Radionuclides Rule, all community public water supplies were requires to sample quarterly for radionuclides beginning January 2007 – December 2007. Your public water supply completed sampling by the scheduled deadline; however, during an audit of the Mississippi State Department of Health Radiological health laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water systems # 80004 & #80017 have not completed the monitoring requirements, however your water systems # 80003 & # 80015 have completed the monitoring requirements and is now in compliance with the Radionuclides Rule. The Bureau of Public Water Supply has taken action to ensure that your water system be returned to compliance by March 31, 2013. If you have any questions, please contact Melissa Parker, Deputy Director, Bureau of Public Water Supply, at 601.576.7518.

The Pelucia Rural Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.

u

2011 Annual Drinking Water Quality Report Pelucia Rural Water Association, Inc. PWS#: 080003, 080004, 080015 and 080017 June 2012

We're pleased to present to you this year's Annual Quality Water Report. This report is designed to inform you about the quality water and services we deliver to you every day. Our constant goal is to provide you with a safe and dependable supply of drinking water. We want you to understand the efforts we make to continually improve the water treatment process and protect our water resources. We are committed to ensuring the quality of your water. Our water source is from wells drawing from the Tallahatta Formation and the Meridian Upper Wilcox

The source water assessment has been completed for our public water system to determine the overall susceptibility of its drinking water supply to identify potential sources of contamination. A report containing detailed information on how the susceptibility determinations were made has been furnished to our public water system and is available for viewing upon request. The wells for the Pelucia Rural Water Association have received a lower susceptibility ranking to contamination.

If you have any questions about this report or concerning your water utility, please contact Charles Mims at 662.455.2660. We want our valued customers to be informed about their water utility. If you want to learn more, please attend any of our regularly scheduled meetings. They are held on the second Monday of each month at 6:00 PM at the Pelucia office building.

We routinely monitor for constituents in your drinking water according to Federal and State laws. This table below lists all of the drinking water contaminants that were detected during the period of January 1th to December 31th, 2011. In cases where monitoring wasn't required in 2011, the table reflects the most recent results. As water travels over the surface of land or underground, it dissolves naturally occurring mineral and, in some cases, radioactive materials and can pick up substances or contaminants from the presence of animals or from human admits operations, and wildlife, inorganic contaminants, such as a satis and metals, which can be naturally occurring or result from urban storm-water runoff, industrial, or domestic wastewater discharges, oil and gas production, mining, or farming; pesticides and herbicides, which make of the presence of animals or the presence of an admitted to the presence of an admitted to the presence of the result of oil and gas production, and can also come from a variety of sources such as agriculture, urban storm-water runoff, and residential uses; organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations and septic systems; radioactive contaminants, which can be naturally occurring or be the result of oil and gas production and paging activities. In order to ensure that tap water is safe to drink. EPA prescribes regulations that limit the amount of certain contaminants in the process of some constituents. It's important to remember that the presence of these constituents does not necessarily indicate that the presence are present that the presence of these constituents does not necessarily indicate that the presence of these constituents does not necessarily indicate that the presence of these constituents does not necessarily indicate that the presence of these constituents does not necessarily indicate that the presence of these const

In this table you will find many terms and abbreviations you might not be familiar with. To help you better understand these terms provided the following definitions:

Action Level - the concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Maximum Contaminant Level (MCL) - The "Maximum Allowed" (MCL) is the highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.

Maximum Contaminant Level Goal (MCLG) - The "Goal"(MCLG) is the level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.

Maximum Residual Disinfectant Level (MRDL) — The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control microbial contaminants.

Maximum Residual Disinfectant Level Goal (MRDLG) — The level of a drinking water disinfectant below which there is no known or expected risk of health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.

Parts per million (ppm) or Milligrams per liter (mg/l) - one part per million corresponds to one minute in two years or a single penny in \$10,000.

	<i>†</i> 008000	3	68 M. (40.)	per billion corresponds to one minute in 2,000 years, or a single penny in \$10,000 TEST RESULTS						
Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL	Likely Source of Contamination		
Inorganic	Contam	inants			Ballow Asym	ri pari A	SAMANA A	<u> </u>		
10. Barium	IN	2011	.046	Tai-a			1.00			
17, Lead	N	2009/11	.040	No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits		
19. Nitrate (as				0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits		
Vitrogen)	N	2011	.86	No Range	ppm	10	10	Runoff from fertilizer use; leachin from septic tanks, sewage; erosic of natural denosits		

8	를 <mark>하고 있다고 있다. 그는 </mark>	
. 1	This is a second of the second	
\forall	Disinfection By-Products	
े		
	Chlorine Y 2011 8 7.9	
	- - - - - - -	MRDL = 4 Water additive used to control
		microbes

Contaminant	Violation	Date	***************************************	EST RESU		a March 1969, 1985		
	Y/N	Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG	MCL	Likely Source of Contamination
Inorganic	Contam	inants						
10. Barlum	l N	2011	044					
14. Copper				No Range	ppm	2	2	Discharge of drilling wastes; discharge from metal refineries; erosion of natural deposits
17. Lead	N N	2011	2	0	ppm	1.3	AL=1.3	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
		2009/11	1	0	ppb	0	AL=15	Corrosion of household plumbing systems, erosion of natural deposits
19. Nitrate (as Nitrogen)	N	2011	.86	No Range	ppm	10	10	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Disinfection	on By-Pr	oducts						
Chlorine		.8	8.	9 рр	n	0 MRE	L = 4 V	Vater additive used to control

Contaminant	Violatio Y/N	n Date Collecte	Level d Detecte	Range of Detect or # of Sample: Exceeding MCL/ACL		MC	CLG	мс	CL Likely Source of Contamination
Inorganic	Contan	ninants							
10. Barlum	N	2011	.047	No Range	ppm		2		Discharge of drilling wastes, discharge from metal refineries; erosion of natural deposits
14. Copper	N	2011	.1	0	ppm		1.3	AL⇒	1.3 Corrosion of household plumbin systems; erosion of natural deposits; leaching from wood preservatives
15. Cyanide	N	2011	57.77	No Range	ppb		200	2	200 Discharge from steel/metal factories; discharge from plastic and fertilizer factories
	N	2009/11	2	0	ppb		0	AL=	 Corrosion of household plumbin systems, erosion of natural deposits
19. Nitrate (as Nitrogen)	_ N	2011	.87	No Range	ppm		10		10 Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposite
Disinfection	on By-P	roducts				les.			
31. HAA5			1.38 P. Sev ()	Scool America	opb	0	1/8/8	60	By-Product of drinking water disinfection.
Chlorine	<u> </u>	2011	.5	58	ppm	0	MRC	L=4	Water additive used to control microbes

Contaminant	Violation Y/N	Date Collected	Level Detected	Range of Detects or # of Samples Exceeding MCL/ACL	Unit Measure- ment	MCLG		MCL	Likely Source of Contamination
Inorganic	Contam	inants		Commence of the commence of th		1			
10. Barium	N	2011	.044	No Range	ppm	2	2	Discharge of discharge fro erosion of na	drilling wastes; m metal refineries; tural denosits
14. Copper	N	2009/11	.3	0	ppm,	1.3	AL=1.3	Corrosion of household plumbin systems; erosion of natural deposits; leaching from wood preservatives	
17. Lead	N	2009/11	1	0 ′	ppb	0	AL=15		ousehold plumbin
19. Nitrate (as Nitrogen)	N	2011	.86	No Range	ppm	10	10	Runoff from for leaching from sewage; erosi deposits	septic tanks,
Disinfectio	n By-Pr	oducts							
Chlorine	N 2	011	8 .7	9 рр	m	0 MRD		ater additive us	ed to control

We are required to monitor your drinking water for specific constituents on a monthly basis. Results of regular monitoring are an indicator of whether or not our drinking water meets health standards. In an effort to ensure systems complete all monitoring requirements, MSDH now notifies systems of any missing samples prior to the end of the compliance period.

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. Our Water Association is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead. The Mississippi State Department of Health Public Health Laboratory offers lead testing. Please contact 601 576 7592 if you wish to have your water fested. 601.576.7582 if you wish to have your water tested.

All sources of drinking water are subject to potential contamination by substances that are naturally occurring or man made. These substances can be microbes, inorganic or organic chemicals and radioactive substances. All drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that the water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the Environmental Protection Agency's Safe Drinking Water Hottine at 1-800-426-4791.

Some people may be more vulnerable to contaminants in drinking water than the general population. Immuno-compromised persons such as persons with cancer undergoing chemotherapy, persons who have undergone organ transplants, people with HIV/AIDS or other immune system disorders, some elderly, and infants can be particularly at risk from infections. These people should seek advice about drinking water from their health care providers. EPA/CDC guidelines on appropriate means to lessen the risk of infection by cryptosporidium and other microbiological contaminants are available from the Safe Drinking Water Hotline 1-800-426-4791.

In accordance with the Radionuclides Rule, all community public water supplies were requires to sample quarterly for radionuclides beginning January 2007 — December 2007. Your public water supplies were requires to sample quarterly for radionuclides beginning Mississippl State Department of Health Radiological health laboratory, the Environmental Protection Agency (EPA) suspended analyses and reporting of radiological compliance samples and results until further notice. Although this was not the result of inaction by the public water supply, MSDH was required to issue a violation. This is to notify you that as of this date, your water systems # 80004 & #80017 have not completed the monitoring requirements, however your water systems # 80005 have completed the monitoring requirements and is now in compliance with the Radionuclides Rule. The Bureau of Public Water Supply has taken action to ensure that your water systems be returned to compliance by March 31, 2013. If you have any questions, phease contact mensas Parker, Deputy Director, Bureau of Public Water Supply, at 601,576,7518.

The Pelucia Rural Water Association works around the clock to provide top quality water to every tap. We ask that all our customers help us protect our water sources, which are the heart of our community, our way of life and our children's future.